Real-time monitoring of calcineurin activity in living cells: evidence for two distinct Ca2+-dependent pathways in fission yeast.

نویسندگان

  • Lu Deng
  • Reiko Sugiura
  • Mai Takeuchi
  • Masahiro Suzuki
  • Hidemine Ebina
  • Tomonori Takami
  • Atsushi Koike
  • Shiori Iba
  • Takayoshi Kuno
چکیده

In fission yeast, calcineurin dephosphorylates and activates the Prz1 transcription factor. Here, we identified the calcineurin-dependent response element (CDRE) in the promoter region of prz1(+) gene and monitored the calcineurin activity in living cells using a destabilized luciferase reporter gene fused to three tandem repeats of CDRE. Elevated extracellular CaCl(2) caused an increase in calcineurin activity with an initial peak and then approached a sustained constant level in a concentration-dependent manner. In CaCl(2)-sensitive mutants such as Deltapmc1, the response was markedly enhanced, reflecting its high intracellular Ca(2+). Agents expected to induce Ca(2+) influx showed distinct patterns of the CDRE-reporter activity, suggesting different mechanisms of calcineurin activation. Knockout of yam8(+) or cch1(+) encoding putative subunits of a Ca(2+) channel abolished the activation of calcineurin upon exposure to various stimuli, including high extracellular NaCl and cell wall-damaging agents. However, knockout of yam8(+) or cch1(+) did not affect the activation of calcineurin upon stimulation by elevated extracellular Ca(2+). The Pck2 protein kinase C-Pmk1 mitogen-activate protein kinase pathway was required for the stimulation of calcineurin via Yam8/Cch1-mediated Ca(2+) influx, but it was not required for the stimulation by elevated extracellular Ca(2+), suggesting two distinct pathways for calcineurin activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-Time Monitoring of Calcineurin Activity in Living Cells: Evidence for Two Distinct Ca-Dependent Pathways in Fission Yeast

In fission yeast, calcineurin dephosphorylates and activates the Prz1 transcription factor. Here, we identified the calcineurin-dependent response element (CDRE) in the promoter region of prz1 gene, and monitored the calcineurin activity in living cells using a destabilized luciferase reporter gene fused to three tandem repeats of CDRE. Elevated extracellular CaCl2 caused an increase in calcine...

متن کامل

Zinc finger protein Prz1 regulates Ca2+ but not Cl- homeostasis in fission yeast. Identification of distinct branches of calcineurin signaling pathway in fission yeast.

Calcineurin is an important mediator that connects the Ca(2+)-dependent signaling to various cellular responses in a wide variety of cell types and organisms. In budding yeast, activated calcineurin exerts its function mainly by regulating the Crz1p/Tcn1 transcription factor. Here, we cloned the fission yeast prz1(+) gene, which encodes a zinc finger transcription factor highly homologous to Cr...

متن کامل

Calcineurin phosphatase in signal transduction: lessons from fission yeast.

Calcineurin (protein phosphatase 2B), the only serine/threonine phosphatase under the control of Ca2+/calmodulin, is an important mediator in signal transmission, connecting the Ca2+-dependent signalling to a wide variety of cellular responses. Furthermore, calcineurin is specifically inhibited by the immunosuppressant drugs cyclosporin A and tacrolimus (FK506), and these drugs have been a powe...

متن کامل

Clausmarin A, Potential Immunosuppressant Revealed by Yeast-Based Assay and Interleukin-2 Production Assay in Jurkat T Cells

Small-molecule inhibitors of Ca2+-signaling pathways are of medicinal importance, as exemplified by the immunosuppressants FK506 and cyclosporin A. Using a yeast-based assay devised for the specific detection of Ca2+-signaling inhibitors, clausmarin A, a previously reported terpenoid coumarin, was identified as an active substance. Here, we investigated the likely mechanism of clausmarin A acti...

متن کامل

Calcineurin directs the reciprocal regulation of calcium entry pathways in nonexcitable cells.

The reciprocal regulation of noncapacitative and capacitative (or store-operated) Ca2+ entry in nonexcitable cells (Mignen, O., Thompson, J. L., and Shuttleworth, T. J. (2001) J. Biol. Chem. 276, 35676-35683) represents a switching between two distinct Ca2+-selective channels: the noncapacitative arachidonate-regulated Ca2+ channels (ARC channels) and the store-operated Ca2+ channels (SOC chann...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 17 11  شماره 

صفحات  -

تاریخ انتشار 2006